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Abstract

A new direct constrained optimization algorithm for minimizing the Kohn–Sham (KS) total energy functional is pre-
sented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of
subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of
a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but
also gives an optimal ‘‘step-length’’ to move along this search direction. Numerical examples are provided to demonstrate
that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the fundamental problems in electronic structure calculations is to minimize the Kohn–Sham (KS)
total energy functional with respect to electron wave functions. Currently, the most widely used approach for
solving this minimization problem is to apply the so called Self Consistent Field (SCF) iteration to the non-
linear equation derived from the first order necessary optimality condition. In each SCF iteration, one must
compute approximations to a few smallest eigenvalues and their corresponding eigenvectors of a large matrix
(Hamiltonian).

Methods for minimizing the total energy directly have been examined in the past [3,9,24,19,2,14,20,25,26].
These methods construct a search direction based on the gradient of the total energy, and perform some type
of line search along that direction in order to determine an optimal step length. The difficulty with these
approaches is that the line search strategy must take into account the orthonormality constraints imposed
on the wave functions. Due to this difficulty, the minimization algorithms developed in the past could be
slower than SCF by a factor of 1.5 to 10 [14].
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In this paper, we show that direct minimization of the KS functional can be made more effective than the
SCF algorithm. Instead of using a simple line search strategy, we project the total energy into a subspace from
which an optimal search direction and step length are determined simultaneously by solving a smaller nonlin-
ear eigenvalue problem. In our approach, the optimal wave functions are determined simultaneously rather
than ‘‘band-by-band’’. The orthonormality constraint of these wave functions is automatically satisfied by
the solution to the small nonlinear eigenvalue problem.

2. Mathematical background

In this section, we establish the mathematical notation required to describe a new constrained optimization
algorithm. We begin with the continuous formulation of the optimization problem, and establish the finite-
dimensional analog using linear algebra notation.

We denote the ith electron wave function by wi(r), where r represents the (three-dimensional) spatial coor-
dinates. We denote the electron charge density by q(r). It is defined by
qðrÞ ¼
Xk

i¼1

jwiðrÞj
2
;

where k is the number of occupied states.
The KS total energy functional consists of several components, i.e.,
Etotal½fwig� ¼ Ekinetic þ Eion þ EH þ EXC; ð1Þ

where Ekinetic is the kinetic energy, Eion,EH and EXC are potential energies induced by the electron–ion inter-
action (ionic potential), the electron–electron interaction (Hartree potential) and the exchange correlation po-
tential respectively.

The kinetic energy of the atomistic system is defined by
Ekinetic ¼ �
1

2

Xk

i¼1

Z
�wiðrÞr2wiðrÞdr;
where $2 is the Laplacian operator, and �w is the complex conjugate of w.
The ionic potential energy consists of a local and a non-local term. The local term can be expressed by
EionðlocalÞ ¼
Z

V ionðrÞqðrÞdr;
where Vion(r) represents some local ionic potential function. The contribution from the non-local term is de-
fined by
EionðnonlocalÞ ¼
Xk

i¼1

X
‘

Z
�wiðrÞw‘ðrÞdr

���� ����2;

where w‘(r) denotes a pseudo-potential reference projection function.

The Hartree potential, defined by
V HðrÞ ¼
Z

qðr0Þ
jr � r0j dr0;
is used to model the classical electrostatic average interaction between electrons. Its contribution to the total
energy is defined by
EH ¼
1

2

Z
V HðrÞqðrÞdr.
The exchange correlation function �xc is used to model the non-classical and quantum interaction between
electrons. The potential energy induced by this function is defined by
EXC ¼
Z

qðrÞ�xcðqðrÞÞdr.
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It is important to note that the minimization of the total energy (1) must be carried out under the ortho-
normality constraint
Z

�wiðrÞwjðrÞdr ¼ di;j.
In the following discussion, we will use AT to denote the transpose of a matrix A, and A* to denote the com-
plex conjugate of A. A submatrix of A consisting of rows i through j and columns p through q will be denoted by
the notation A(i:j,p:q). If the submatrix contains all rows (columns) of A, it will be denoted by A(:,p:q) (A(i:j,:)).

With an appropriate discretization scheme, the electron wave function wi(r) can be approximated by a vec-
tor xi 2 Cn, where n is the spatial degree of freedom, i.e., the number of real space grid points. If we let
X = (x1,x2, . . . ,xk), then the charge density associated with the k occupied states can be expressed by
qðX Þ ¼ diag ðXX �Þ;

where diag(A) denotes a column vector consisting of diagonal entries of the matrix A.

Under the same discretization, the Laplacian operator $2 can be approximated by a Hermitian matrix
L 2 Cn�n. The discretized local ionic potential can be represented by a diagonal matrix Dion, and the discrete
form of the Hartree potential can be represented by the product of a Hermitian matrix S 2 Cn�n with q(X).

Using the notation established above, we can express the discrete form of various components of the total
energy (1) by
Ekinetic ¼
1

2
traceðX �LX Þ; ð2Þ

EionðlocalÞ ¼ traceðX �DionX Þ; ð3Þ

EionðnonlocalÞ ¼
X

i

X
‘

x�i w‘

�� ��2; ð4Þ

EH ¼
1

2
qðX ÞTSqðX Þ; ð5Þ

EXC ¼ qðX ÞT �xc½qðX Þ�ð Þ. ð6Þ
Once discretized, the minimization problem becomes
min EtotalðX Þ
s.t. X �X ¼ Ik;

ð7Þ
where Ik denotes a k · k identity matrix.
The Lagrangian associated with (7) is
LðX Þ ¼ EtotalðX Þ � trace½KTðX �X � IkÞ�; ð8Þ

where K is a k · k matrix containing the Lagrange multipliers associated with the constraints specified by
X*X = Ik.

The solution to (7) must satisfy the first order necessary condition
rXLðX Þ ¼ 0;

X �X ¼ Ik.
ð9Þ
Here, rXL represents an n · k matrix whose (i, j)th entry is the partial derivative of L with respect to the
(i, j)th entry of X.

It is easy to verify that
rX Ekinetic ¼
1

2
LX ; ð10Þ

rX EionðlocalÞ ¼ DionX ; ð11Þ
rX EionðnonlocalÞ ¼

X
‘

w‘w�‘
� �

X ; ð12Þ

rX EH ¼ DiagðSqðX ÞÞX ; ð13Þ
rX EXC ¼ DiagðlxcðqÞÞX ; ð14Þ
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where
lxcðxÞ �
d½x�xcðxÞ�

dx
is the derivative of the exchange-correlation function. Here the notation Diag(q) represents a diagonal matrix
whose diagonal is determined by the vector q, and we scaled (10)–(14) by 1/2 to be consistent with the con-
vention used in the electronic structure community.

Substituting (10)–(14) into (9), we obtain the Kohn–Sham equation
HðX ÞX ¼ XKk;

X �X ¼ Ik;
ð15Þ
where H(X) is the Kohn–Sham Hamiltonian defined by
HðX Þ ¼ 1

2
Lþ Dion þ

X
‘

w‘w�‘ þDiagðSqðX ÞÞ þDiagðlxcðqðX ÞÞÞ. ð16Þ
Because the vector q in (16) depends on X, the eigenvalue problem defined by (15) is nonlinear. Note that
the solution to (7) is not unique. If X is a solution, then XQ is also a solution for some Q 2 Ck�k such that
Q*Q = Ik. That is, the solution to the constrained minimization problem or, equivalently, the nonlinear equa-
tions (15) is a k-dimensional invariant subspace in Cn rather than a specific matrix. In particular, Q can be
chosen such that Kk is diagonal. In this case, X consists of k Kohn–Sham eigenvectors associated with the
k smallest eigenvalues of (15).

3. The self-consistent field iteration

The most widely used method for computing the wave functions associated with the minimum total energy
is the so-called self consistent field (SCF) iteration, which corresponds to a fixed point iterative scheme applied
to the Kohn–Sham equation (15). Given an initial guess of X, say X(0), one forms the discrete Hamiltonian,
H ð1Þ ¼ 1

2
Lþ Dion þ

X
‘

w‘w�‘ þDiagðSqðX ð0ÞÞÞ þDiagðlxcðqðX ð0ÞÞÞÞ; ð17Þ
and computes eigenvectors X(1) associated with the k smallest eigenvalues of H(0). These eigenvectors defines a
new Hamiltonian H(2). In the basic version of the SCF iteration, the difference between q(X(i�1)) and q(X(i)) is
examined at each step to determine whether the iteration should be terminated. If the change in the charge
density remains large, the eigenvectors associated with the k smallest eigenvalues of H(i) are computed, and
this process continues until the iq(X(i�1)) � q(X(i))i becomes negligibly small. In this case, X(i) consists of a
set of wave functions that are self-consistent with respect to the KS equation (15).

For completeness, we outline the major steps of the basic version of a SCF calculation in Fig. 1.
Depending on the discretization scheme used, it may not be necessary or possible to form the Hamiltonian

H(i) explicitly in the SCF calculation. This is particularly true when the continuous problem is discretized by a
spectral method using a plane wave basis. In that case, H(i) only exists in the form of a matrix vector multi-
plication procedure.

For large-scale problems or problems in which H(i) cannot be formed explicitly, it is usually not feasible to
solve the linear eigenvalue problem H(i)X(i) = X(i)K(i) by using a QR [7,8] type of eigensolver. Iterative methods
such as the Lanczos [16], preconditioned conjugate gradient [10] or a Jacobi–Davidson type of method
[23,5,18] are more appropriate in this setting.

Note that computing the k smallest eigenvalues of H(i) is equivalent to solving the following constrained
quadratic minimization problem:
min qðX Þ ¼ 1

2
trace½X �H ðiÞX �

s.t. X �X ¼ Ik.
ð18Þ



Fig. 1. The SCF iteration.
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Because the the gradient of the objective in (18) is the same as the gradient of Etotal(X) at X(i). The minimiza-
tion of the quadratic objective in (18) can lead to a reduction of Etotal. Thus, the SCF iteration can be viewed
as a procedure that minimizes the total energy functional by minimizing a sequence of quadratic surrogate
functionals.

The major computational cost of the SCF scheme is in solving the linear eigenvalue problem (15) or the
quadratic minimization problem (18) at Step 3 in each iteration. Because the condition number of H(i) is typ-
ically large (>106), and the eigenvalues of interest are typically clustered at the low end of the spectrum, solv-
ing such a problem can be extremely challenging. In the materials science community, the common practice is
to apply a few preconditioned conjugate gradient iterations to solve (18) only approximately. This approach is
plausible not only because it is computationally efficient, but also because the gradients of (18) and Etotal

match only at X(i). That is, if one moves too far along a descent direction associated with q(X) by solving
(15) or (18) very accurately, then Etotal(X) may actually increase.

The SCF iteration can also be viewed as a fixed-point iteration. However, because one cannot write down
an explicit mapping from X(i�1) to X(i) even if the linear eigenvalue problem
H ðiÞX ðiÞ ¼ X ðiÞKðiÞ; ð19Þ
can be solved exactly, it is somewhat difficult to analyze the convergence of the SCF iteration using the stan-
dard theory for a fixed point iteration without making certain assumptions.

Although the basic SCF iteration works on some problems, it tends to fail for many large systems. In prac-
tice, a modified scheme in which a mixture of H(i) and H(i�1) is used to replace H(i) in Step 2 of the algorithm is
much more effective. This scheme is called charge or potential mixing [15,14]. Furthermore, charge mixing is
often combined with the use of the direct inversion of iterative subspace (DIIS) algorithm proposed in
[21,22,11] to accelerate the convergence of SCF. However, there is no theoretical guarantee that these tech-
niques will always work. In fact, there are cases in which these techniques fail also.
4. A constrained optimization algorithm for total energy minimization

The algorithm we present in this section aims at minimizing the KS total energy functional directly. This
general approach has been discussed in a number of papers [9,24,2,19,14,26,25]. In [24,19], a conjugate gradi-
ent (CG) type of algorithm is used to minimize the total energy. The minimization is carried out ‘‘band-by-
band’’, i.e., the total energy is minimized with respect to one wave function at a time. For the jth band (wave-
function), the search direction pðiÞj is generated from a linear combination of the wavefunction xðiÞj ¼ X ðiÞej and
the residual
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rj ¼ H ðiÞxðiÞj � xðiÞj kj;
where kj is the jth eigenvalue of the projected Hamiltonian X(i)*H(i)X(i). Note that rj is simply the jth column of
the gradient matrix rXLðX ðiÞÞ. Similar to a standard CG algorithm, the linear combination of xðiÞj and rj is
chosen so that pðiÞj is H(i)-conjugate to the previous search direction pði�1Þ

j . The new wavefunction xðiþ1Þ
j is then

computed by minimizing the KS total energy in the subspace spanned by xðiÞj and pðiÞj . To simplify this mini-

mization problem, pðiÞj is first orthogonalized against xðiÞj and normalized so that kpðiÞj k ¼ 1. The new wavefunc-
tion is parameterized by
xðiþ1Þ
j ¼ xðiÞj cos hþ pðiÞj sin h;
where the optimal h is obtained by a standard line search procedure. Instead of using the KS functional to
perform the line search, Teter et al. [24] proposed using a surrogate function that is cheaper to evaluate. How-
ever, this approach was shown in [14] to be less efficient than the SCF iteration. We believe this is primarily
due to the ‘‘band-by-band’’ nature of the algorithm.

The methods presented in [9,2,26,25] were designed to minimize the total energy with respect to all wave
functions (associated with the occupied state) simultaneously. The method developed in [9] modifies the
unconstrained conjugate gradient search direction so that the orthonormality constraint X*X = Ik can be sat-
isfied. The approaches taken in [2,25] reparameterize the search direction so that standard unconstrained min-
imization can be used directly. The algorithm developed in [26] first computes the search direction via a
limited-memory BFGS [17] scheme, the search direction is then modified through a parallel transport tech-
nique [6] to ensure that the orthonormality constraint X*X = Ik is satisfied in the line search procedure. In
all of these methods, the search direction is computed first, and an optimal step length is then determined
to reduce the total energy along computed search direction.

The direct minimization algorithm we present here also seeks the optimal wave functions associated
with all occupied states simultaneously. However, we choose the search direction and the step length
simultaneously from a subspace that consists of the existing wave functions X(i), the gradient of the
Lagrangian (8) and the search direction produced in the previous iteration. A special strategy is developed
to minimize the total energy within the search space while maintaining the orthonormality constrained
required for X(i+1). This strategy requires us to solve a projected nonlinear eigenvalue problem as we will
show below.

Let R(i) be the preconditioned gradient of the Lagrangian (8) with respect to X evaluated at X(i), and let
P(i�1) be the search direction obtained in the i � 1st iteration. In our algorithm, the wave function update
is performed within the 3k-dimensional subspace spanned by X(i),R(i) and P(i�1). This is in the same spirit
as the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm proposed in [13]
for solving large-scale linear eigenvalue problems. Note that the inclusion of P(i�1) is important. It pre-
vents the search direction constructed at the ith step from being parallel to the steepest descent direction
which often results in a tiny step between X(i) and X(i+1) (Hence a small reduction in Etotal from X(i) to
X(i+1)).

If we let
Y ¼ ðX ðiÞ;RðiÞ; P ði�1ÞÞ;
we can then express the new approximation, X(i+1), by
X ðiþ1Þ ¼ YG; ð20Þ
where G 2 C3k�k is chosen to minimize bEðGÞ � EtotalðYGÞ, i.e. we must solve
min
G

EtotalðYGÞ

s.t. G�Y TYG ¼ Ik.
ð21Þ
The first order necessary condition of (21) can be derived by examining the gradient of bEðGÞ with respect to G.



C. Yang et al. / Journal of Computational Physics 217 (2006) 709–721 715
It is easy to verify that
rG
bELðGÞ ¼

1

2
rG½traceðG�Y �LYGÞ� ¼ ðY �LY ÞG; ð22Þ

rG
bEV ðGÞ ¼rG½traceðG�Y �DionYGÞ� ¼ Y �DionYG; ð23Þ

rG
bEW ðGÞ ¼rG

X
i

X
‘

w�‘Ygi

�� ��2" #
¼
X
‘

ðY �w‘ÞðY �w‘Þ�G; ð24Þ

rG
bERðGÞ ¼

1

2
rG qðYGÞTSqðYGÞ
h i

¼ Y �Diag½SqðYGÞ�YG; ð25Þ

rG
bEX ðGÞ ¼rG½qðYGÞ�xcðqðYGÞÞ� ¼ Y �Diag½lxcðqðYGÞÞ�YG. ð26Þ
Again, (22)–(26) have been scaled by 1/2 to be consistent with the convention used in the electronic structure
community.

If we define
bH ðGÞ ¼ Y �
1

2
Lþ Dion þ

X
‘

w‘w�‘ þDiagðSqðYGÞÞ þDiagðlxcðqðYGÞÞÞ
" #

Y ; ð27Þ
then, solving (21) is equivalent to solving
bH ðGÞG ¼ BGXk; ð28Þ
G�BG ¼ Ik; ð29Þ
where B = Y*Y and the k · k diagonal matrix Xk contains the k smallest eigenvalues of (28).
Note that the projected nonlinear eigenvalue problem defined by (28) and (29) is much smaller than the non-

linear eigenvalue solved in an SCF iteration. The reduction in size provides us with more flexibility in terms of
the algorithms we can choose to solve the nonlinear eigenvalue problem. For example, if we apply an SCF iter-
ation to compute the desired eigenpairs of (28) and (29), the linear eigenvalue problem that emerges from each
SCF iteration can be solved by using the LAPACK [1] implementation of the QR algorithm [7,8]. We may even
apply a standard nonlinear constrained minimization algorithm such as a sequential quadratic programming
technique (SQP) [4] to (21) directly. Furthermore, it should be noted that it is not necessary to solve Eqs.
(28) and (29) to full accuracy in the early stage of the direct minimization process because all we need is a G

that yields sufficient decrease in the objective function within the subspace spanned by columns of Y.
Once G is computed, we can update the wave function following (20). In addition, we can compute the

search direction associated with this update
P ðiÞ � X ðiþ1Þ � X ðiÞGð1 : k,:Þ ¼ Y ð:,k þ 1 : 3kÞGðk þ 1 : 3k,:Þ.

Because the solution to (28) and (29) ensures columns of X(i+1) are orthonormal, there is no need to explic-

itly orthogonalize P(i) against X(i) in our algorithm.
A complete description of the constrained minimization algorithm is shown in Fig. 2. We should point out

that solving the projected optimization problem in Step 6 of the algorithm may require us to evaluate the pro-
jected Hamiltonian (27) repeatedly as we search for the best G. However, since the first three terms of bH do
not depend on G, they can be computed and stored in advance. Only the last two terms of (27) need to be
updated. These updates requires the charge density, the Hartree and the exchange-correlation potentials to
be recomputed.

5. Computational complexity

In this section, we estimate the computational complexity of the direct constrained minimization (DCM)
algorithm outlined in Fig. 2, and compare it with the complexity of the SCF iteration. Our estimation is based
on the number of matrix vector multiplications (MATVEC) performed in these algorithms. Each MATVEC is
of the form y Hx, where H is the KS Hamiltonian defined in (16).



Fig. 2. A direct constrained minimization algorithm for total energy minimization.
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The exact cost of each MATVEC depends on how the wavefunctions are discretized. We focus on a spectral
discretization scheme in which plane waves are used as the basis of decomposition. These basis functions are
eigenfunctions of the Laplacian operator (L) associated with the kinetic energy of the atomistic system. Thus,
to perform each MATVEC, one only needs to store the Fourier coefficients of each wave function xj = Xej

instead of xj itself so that y Lxj can be carried out in OðnÞ floating point operations (flops) in the frequency
domain. However, because the potential terms of the Hamiltonian (with the exception of the non-local ionic
potential) are diagonal in the spatial domain, one must convert the Fourier space representation of xj into the
real space representation before operations involving these potential terms are performed. The complexity of
this conversion is Oðn log nÞ when it is carried out by a Fast Fourier Transform (FFT). The result of the real
space calculation must be converted back to the frequency domain (by an FFT) for subsequent computations.
Thus the cost of each MATVEC for a plane wave discretization is dominated by two FFT calculations.

In the DCM algorithm, k MATVECs are performed in each outer iteration to obtain the gradient. If SCF is
used to solve the projected problem (21), then each outer DCM iteration contains a number of inner SCF iter-
ations in which the projected Hamiltonian (27) must be updated repeatedly. The update of the projected Har-
tree potential requires us to compute Sq(YG). Because S is the inverse of L, this calculation is typically carried
out by a fast Poisson solver. The complexity of this computation is approximately Oðn log nÞ, which is equiv-
alent to a single MATVEC used in the SCF iteration asymptotically. Thus, if p inner SCF iterations are taken
in the DCM algorithm, the total number of MATVECs used per DCM iteration is k + p.
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When an SCF iteration is used to solve (9) directly, the quadratic minimization problem (19) (or the linear
eigenvalue problem (15)) is often solved approximately by applying a number of preconditioned conjugate
gradient (PCG) (inner) iterations. Each PCG iteration requires k matrix vector (MATVEC) multiplications
followed by k preconditioning operations. The Laplacian operator L is often used as the preconditioner.
Because it is diagonal in the frequency space, the cost of preconditioning is relatively small compared to an
FFT calculation. If m PCG iterations are taken on average to compute an approximate eigenpair of (19), then
the total number of MATVECs used per SCF iteration is m · k.

We should point out that both the SCF and the DCM algorithms perform an additional Oðn � k2Þ basic lin-
ear algebra (BLAS) operations in each inner iteration. In SCF, these operations are used to maintain the
orthogonality of the Fourier representation of xj. In DCM, these operations are used to update the charge
density q(YG) and to compute the projected potential term
Y �½DiagðSqðYGÞ þ lxcðqðYGÞÞÞ�Y .
The cost of these BLAS operations is relatively small compared to that associated with FFT when n� k, and
these operations tend to scale very well on parallel machines compared to FFT calculations. However, when k

becomes a significant fraction of n, the cost of these calculations cannot be ignored.

6. Numerical examples

In this section, we provide two numerical examples that demonstrate the performance the DCM algorithm,
and compare it with that of the SCF iteration implemented in the plane wave based electronic structure cal-
culation software package PEtot [27].

We measure the convergence of both algorithms by examining the relative reduction of the total energy
computed in each outer iteration. The relative reduction is evaluated by
DEi ¼ EtotalðX ðiÞÞ � Emin;
where Emin is a lower bound of the total energy.
The computational cost of both the SCF and DCM is estimated by the number of matrix vector multipli-

cations y H(i)x performed in these two algorithms. To illustrate that this is a reliable measure when k	 n,
we also provide the timing measurements. Our computation is performed on the IBM SP maintained at the
National Energy Research Scientific Computing Center (NERSC). Each IBM SP node contains 16 Power3
CPUs and 16 GB memory. Each Power3 CPU runs at a 375Mhz clock speed, and has 2 MB L2 cache. Both
SCF and DCM are parallelized using MPI. We used the IBM math library ESSL for dense matrix and FFT
calculations.

6.1. The SiH4 test problem

In the first example, we applied both algorithms to a simple SiH4 test problem. The wavefunction is defined
on a 32 · 32 · 32 real space grid. The number of plane wave basis functions used in the Fourier representation
is 2103. The number of occupied states for this molecule is k = 4.

In the SCF calculation, we set the convergence tolerance of each PCG run to s = 10�12 and the maximum
number of PCG iterations allowed to 10. That is, we terminate the PCG iteration when
kH ðiÞxðiÞj � kðiÞj xðiÞj k 6 10�12;
or when the number of PCG iterations taken reaches 10. In our experiment, the PCG convergence tolerance
was never reached before the maximum number of iterations were taken. Thus each outer SCF iteration con-
sumed 4 · 10 MATVECS. Both Pulay (DIIS) [21,22] and Kerker [12] charge mixing schemes were used in the
outer SCF iteration to accelerate the convergence.

In DCM, the projected minimization problem was solved by applying a simple SCF iteration (without
charge mixing) to (28). We set the number of inner SCF iterations to 3.

Fig. 3 shows that both SCF and DCM reached the same total energy level after 15 outer iterations. Clearly,
DCM consumed a much smaller number of MATVECs. Furthermore, we observed that the reduction in total
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Fig. 3. Comparing the convergence of SCF and DCM in terms of the number of MATVECs performed for the SiH4 problem.
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energy is monotonic in DCM. In the PEtot version of SCF, the KS Hamiltonian was not updated until the end
of 4th outer iteration. This was required to carry out the charge mixing procedure for accelerating the conver-
gence of SCF. As a result, the total energy objective does not show significant improvement between the 2nd
and the 4th outer iteration.

Because the number of occupied states (k = 4) in SiH4 is relatively small, both SCF and DCM are domi-
nated by the FFT computation required in each MATVEC. Hence, the MATVEC count shown in Fig. 3 gives
a good measure of how the two methods compare in terms of computational speed. In Fig. 4 we plot the
reduction of the total energy with respect to the wall clock time used in both SCF and DCM. Both codes were
parallelized and executed on 16 Power3 CPUs. The figure shows that DCM is almost 4 times faster than SCF
in terms of wall clock time.

6.2. The PtNiO test problem

In the second example, we apply both algorithms to a larger system consisting of 9 atoms and 86 valence
electrons. It represents a thin PtNi slab with one O atom attached to the surface. The system is used for catal-
ysis to dissociate O2 molecules. The wavefunction is defined on a 96 · 48 · 48 real space grid. The number of
plane wave basis functions used in the Fourier representation is 15181, and the number of occupied states for
this molecule is k = 43.
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Fig. 4. Comparing the performance of DCM with SCF in terms of wall clock time for the SiH4 problem.
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In the SCF calculation, we used the same PCG convergence tolerance as that used in the SiH4 example.
That is, each outer SCF iteration consumed 43 · 10 MATVECS. Both Pulay (DIIS) and Kerker charge mixing
schemes were used in the outer SCF iteration to accelerate the convergence.

In the DCM calculation, the projected minimization problem was solved by applying SCF iteration to (28)
also. We set the number of inner SCF iterations to 5. Without charge mixing, the inner SCF iteration diverged
quickly for this problem. After we introduced both Pulay and Kerker charge mixing in the inner SCF itera-
tion, the total energy converged rapidly. However, the convergence is not monotonic as we can see in Fig. 5.
When we used the Pulay mixing in the inner SCF iteration, we mixed charge densities produced from the pre-
vious outer iterations also. A maximum of 20 previous charge densities were allowed in the Pulay mixing.

Fig. 5 shows that both SCF and DCM had some difficulty in maintaining a monotonic reduction of the
total energy during the course of convergence. After 20 outer iterations, DCM was able to reach a much lower
total energy level than that reached by SCF. The DCM run also used a much smaller number of MATVECs
than used by SCF. However, performing charge mixing in the inner iteration does not seem to completely sta-
bilize the convergence of the total energy.

In Fig. 6 we plot the reduction of the total energy with respect to the wall clock time used in both SCF and
DCM. Both codes were executed on 64 Power3 CPUs. The figure shows that DCM is roughly 2.5 times faster
than SCF in terms of wall clock time, which is consistent with the MATVEC count shown in Fig. 5.
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Fig. 5. Comparing the convergence of SCF and DCM in terms of the number of MATVECs performed for the PtNiO problem.
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7. Concluding remarks

A direct constrained minimization (DCM) algorithm for computing the ground state total energy of a large
scale atomistic system is presented in this paper. The algorithm constructs a new search direction from the
subspace S spanned by the current approximation to the optimal wavefunction, the preconditioned gradient
of the total energy and the previous search direction. The optimal search direction and step length are com-
puted by minimizing the total energy functional within S subject to an orthonormality constraint. Solving this
smaller optimization problem is equivalent to solving a small nonlinear eigenvalue problem. In our computa-
tional scheme, all wave functions associated with the occupied states are updated simultaneously instead of
‘‘band-by-band’’.

We compared the convergence of the DCM algorithm with that of the SCF iteration implemented in PEtot
through two numerical examples. We demonstrated that DCM can be more efficient than SCF. Because DCM
modifies the wave functions associated with all occupied states simultaneously (a block algorithm), we can
make better use of the cache and memory in each MATVEC thereby further improving the performance of
the computation.

It is observed that neither DCM nor SCF requires each inner iteration to converge to full accuracy in order
to reach the optimal solution. In our numerical experiment, we set the number of inner iterations in both
methods to a fixed number. However, this is clearly not the best strategy. More research is required to develop
a more effective stopping criterion for the inner iteration in both methods.

In our numerical experiment, the projected optimization problem (21) is solved by applying an SCF
iteration to (28). This simple scheme worked very well for the SiH4 system. For many systems such as the
PtNiO example shown in Section 6.2, it is necessary to use charge mixing scheme in the inner SCF iteration
in order to prevent the algorithm from diverging.

We would like to point out that the projected problem (21) typically has a much smaller dimension com-
pared to the original total energy minimization problem (7). Hence, there is more flexibility in terms of choos-
ing an efficient method for solving the projected problem. For example, it may also be possible to replace the
inner SCF iteration with a Quasi–Newton type of algorithm such as the one used in [26]. We will experiment
and compare different approaches for solving projected problem (21) in future studies. We will also perform a
more comprehensive comparison of DCM with other implementations of the SCF iteration and direct mini-
mization algorithms in the future.
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